如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=______°,∠C=______°;(2)若
如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=______°,∠C=______°;(2)若M为线段BC上的点,过M作直线MH...
如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=______°,∠C=______°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.
展开
1个回答
展开全部
(1)∵BA=BC,
∴∠BCA=∠BAC,
∵DA=DB,
∴∠BAD=∠B,
∵AD=AC,
∴∠ADC=∠C=∠BAC=2∠B,
∴∠DAC=∠B,
∵∠DAC+∠ADC+∠C=180°,
∴2∠B+2∠B+∠B=180°,
∴∠B=36°,∠C=2∠B=72°,
故答案为:36;72;
(2)①在△ADB中,∵DB=DA,∠B=36°,
∴∠BAD=36°,
在△ACD中,∵AD=AC,
∴∠ACD=∠ADC=72°,
∴∠CAD=36°,
∴∠BAD=∠CAD=36°,
∵MH⊥AD,
∴∠AHN=∠AHE=90°,
∴∠AEN=∠ANE=54°,
即△ANE是等腰三角形;
②CD=BN+CE.
证明:由①知AN=AE,
又∵BA=BC,DB=AC,
∴BN=AB-AN=BC-AE,CE=AE-AC=AE-BD,
∴BN+CE=BC-BD=CD,
即CD=BN+CE.
∴∠BCA=∠BAC,
∵DA=DB,
∴∠BAD=∠B,
∵AD=AC,
∴∠ADC=∠C=∠BAC=2∠B,
∴∠DAC=∠B,
∵∠DAC+∠ADC+∠C=180°,
∴2∠B+2∠B+∠B=180°,
∴∠B=36°,∠C=2∠B=72°,
故答案为:36;72;
(2)①在△ADB中,∵DB=DA,∠B=36°,
∴∠BAD=36°,
在△ACD中,∵AD=AC,
∴∠ACD=∠ADC=72°,
∴∠CAD=36°,
∴∠BAD=∠CAD=36°,
∵MH⊥AD,
∴∠AHN=∠AHE=90°,
∴∠AEN=∠ANE=54°,
即△ANE是等腰三角形;
②CD=BN+CE.
证明:由①知AN=AE,
又∵BA=BC,DB=AC,
∴BN=AB-AN=BC-AE,CE=AE-AC=AE-BD,
∴BN+CE=BC-BD=CD,
即CD=BN+CE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询