已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为14的直线l,使得l

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为14的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段... 已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为14的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|?|PB|=|PC|2.(1)求双曲线G的渐近线的方程;(2)求双曲线G的方程;(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程. 展开
 我来答
邵峰4X35Ey
推荐于2016-09-23 · 超过50用户采纳过TA的回答
知道答主
回答量:165
采纳率:50%
帮助的人:113万
展开全部
(1)设双曲线G的渐近线的方程为y=kx,
则由渐近线与圆x2+y2-10x+20=0相切可得
|5k|
k2+1
=
5

所以k=±
1
2
,即双曲线G的渐近线的方程为y=±
1
2
x.(3分)
(2)由(1)可设双曲线G的方程为x2-4y2=m,
把直线l的方程y=
1
4
(x+4)代入双曲线方程,
整理得3x2-8x-16-4m=0,
则xA+xB=
8
3
,xAxB=-
16+4m
3
.(*)
∵|PA|?|PB|=|PC|2,P、A、B、C共线且P在线段AB上,
∴(xP-xA)(xB-xP)=(xP-xC2,即(xB+4)(-4-xA)=16,
整理得4(xA+xB)+xAxB+32=0.
将(*)代入上式得m=28,
∴双曲线的方程为
x2
28
-
y2
7
=1.(8分)
(3)由题可设椭圆S的方程为
x2
28
+
y2
a2
=1(a>2
7
),
设垂直于l的平行弦的两端点分别为M(x1,y1),N(x2,y2),MN的中点为P(x0,y0),
x
2
1
28
+
y
 
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消