
函数f(x)=sinx^2 +√3sinxcosx在[π/4,π/2]的最大值?
1个回答
展开全部
f(x)=(1-cos2x)/2+√3/2*sin2x
=√3/2sin2x-1/2*cos2x+1/2
=sin2xcosπ/6-cos2xsinπ/6+1/2
=sin(2x-π/6)+1/2
π/4<=x<=π/2
π/2<=2x<=π
π/3<=2x-π/6<=5π/6
所以2x-π/6=π/2时
最大值=1+1/2=3/2
=√3/2sin2x-1/2*cos2x+1/2
=sin2xcosπ/6-cos2xsinπ/6+1/2
=sin(2x-π/6)+1/2
π/4<=x<=π/2
π/2<=2x<=π
π/3<=2x-π/6<=5π/6
所以2x-π/6=π/2时
最大值=1+1/2=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询