在三角形ABC中,AB=AC=5,且三角形ABC的面积为12,则三角形ABC外接圆的半径为?

 我来答
世树花塔娴
2019-11-04 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:939万
展开全部
解:过点A作AD⊥BC于点D,设外接圆心为O,连接OB,OC

S三角形ABC=1/2*AB*AC*sinA=1/2*5*5*sinA=12

sinA=24/25,cosA=7/25

根据余弦定理有:

BC^=AB
^+AC
^
-2AB*AC*cosA=25+25-2*5*5**7/25=36

BC=6

而∠BOC=2∠A(圆心角为圆周角的2倍)
,r=OB=OC,BD=CD=1/2BC=3

故∠BOD=
∠COD=∠A

在直角三角形OBD中

sin∠BOD=sinA=BD/OB

r=OB=25/8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式