已知一个等差数列共有2n+1项,其中奇数项之和为290,偶数项之和为261,则n值为
1个回答
展开全部
解由奇数项之和为290,
即S奇=(n+1)(a1+a(2n+1))/2=290
即(n+1)2a(n+1)/2=290
即(n+1)a(n+1)=290.(1)
又有偶数项之和为261
即S偶=n(a2+a(2n))/2=261
即n*2a(n+1)/2=261
即na(n+1)=261.(2)
由(1)式:(2)式得
(n+1)/n=290/261
即261n+261=290n
即29n=261
即n=9
即S奇=(n+1)(a1+a(2n+1))/2=290
即(n+1)2a(n+1)/2=290
即(n+1)a(n+1)=290.(1)
又有偶数项之和为261
即S偶=n(a2+a(2n))/2=261
即n*2a(n+1)/2=261
即na(n+1)=261.(2)
由(1)式:(2)式得
(n+1)/n=290/261
即261n+261=290n
即29n=261
即n=9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询