已知函数 f(x)= 2 x -1,(x≤0) f(x-1)+1,(x>0) ,把函数g(x)=f(x
已知函数f(x)=2x-1,(x≤0)f(x-1)+1,(x>0),把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为Sn,则S10...
已知函数 f(x)= 2 x -1,(x≤0) f(x-1)+1,(x>0) ,把函数g(x)=f(x)-x 的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n ,则S 10 =( ) A. 2 10 -1 B.2 9 -1 C.45 D.55
展开
1个回答
展开全部
当0<x≤1时,有-1<x-1<0,则f(x)=f(x-1)+1=2
x-1
,
当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2
x-2
+1,
当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2
x-3
+2,
当3<x≤4时,有2<x-1≤3,则f(x)=f(x-1)+1=2
x-4
+3,
以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x-1)+1=2
x-n-1
+n,
所以,函数f(x)=2
x
的图象与直线y=x+1的交点为:(0,1)和(1,2),
由于指数函数f(x)=2
x
为增函数且图象下凸,故它们只有这两个交点.
然后:
①将函数f(x)=2
x
和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2
x
-1和y=x的图象,
取x≤0的部分,可见它们有且仅有一个交点(0,0).
即当x≤0时,方程f(x)-x=0有且仅有一个根x=0.
②取①中函数f(x)=2
x-1
和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位,
即得f(x)=2
x-1
和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).
即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1.
③取②中函数f(x)=2
x-1
和y=x在0<x≤1上的图象,继续按照上述步骤进行,
即得到f(x)=2
x-2
+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).
即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2.
④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…
(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.
综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为:
0,1,2,3,4,…,
其通项公式为:a
n
=n-1,前n项的和为
S
n
=
(n-1)?n
2
,
∴S
10
=45,
故选C.
x-1
,
当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2
x-2
+1,
当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2
x-3
+2,
当3<x≤4时,有2<x-1≤3,则f(x)=f(x-1)+1=2
x-4
+3,
以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x-1)+1=2
x-n-1
+n,
所以,函数f(x)=2
x
的图象与直线y=x+1的交点为:(0,1)和(1,2),
由于指数函数f(x)=2
x
为增函数且图象下凸,故它们只有这两个交点.
然后:
①将函数f(x)=2
x
和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2
x
-1和y=x的图象,
取x≤0的部分,可见它们有且仅有一个交点(0,0).
即当x≤0时,方程f(x)-x=0有且仅有一个根x=0.
②取①中函数f(x)=2
x-1
和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位,
即得f(x)=2
x-1
和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).
即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1.
③取②中函数f(x)=2
x-1
和y=x在0<x≤1上的图象,继续按照上述步骤进行,
即得到f(x)=2
x-2
+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).
即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2.
④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…
(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.
综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为:
0,1,2,3,4,…,
其通项公式为:a
n
=n-1,前n项的和为
S
n
=
(n-1)?n
2
,
∴S
10
=45,
故选C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询