中国数学剩余定理
展开全部
原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数
解答方法:三人同行七十希,五树梅花廿一枝,七子团圆正半月,除百零五便得知。
意思是:将除以3得余数乘以70,将除以5得余数乘以21,将除以7得余数乘以15,全部加起来后再减去105或105的整倍数,得到的数就是答案。
70X2+21x3+15x2=233=105x2+23,
结果就是23。
解法举例:
例一:一个数,除以5余1,除以3余2。问这个数最小是多少?
采用通用的方法:逐步满足法
把除以5余1的数从小到大排列:1,6,11,16,21,26,……
然后从小到大找除以3余2的,发现最小的是11.
所以11就是所求的数。
先满足一个条件,再满足另一个条件,所以称之为“逐步满足法”。
例二:一个数除以5余1,除以3也余1。问这个数最小是多少?(1除外)
特殊的方法:最小公倍法
除以5余1:说明这个数减去1后是5的倍数。
除以3余1:说明这个数减去1后也是3的倍数。
所以,这个数减去1后是3和5的公倍数。要求最小,所以这个数减去1后就是3和5的最小公倍数。即这个数减去1后是15,所以这个数是15+1=16.
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数
解答方法:三人同行七十希,五树梅花廿一枝,七子团圆正半月,除百零五便得知。
意思是:将除以3得余数乘以70,将除以5得余数乘以21,将除以7得余数乘以15,全部加起来后再减去105或105的整倍数,得到的数就是答案。
70X2+21x3+15x2=233=105x2+23,
结果就是23。
解法举例:
例一:一个数,除以5余1,除以3余2。问这个数最小是多少?
采用通用的方法:逐步满足法
把除以5余1的数从小到大排列:1,6,11,16,21,26,……
然后从小到大找除以3余2的,发现最小的是11.
所以11就是所求的数。
先满足一个条件,再满足另一个条件,所以称之为“逐步满足法”。
例二:一个数除以5余1,除以3也余1。问这个数最小是多少?(1除外)
特殊的方法:最小公倍法
除以5余1:说明这个数减去1后是5的倍数。
除以3余1:说明这个数减去1后也是3的倍数。
所以,这个数减去1后是3和5的公倍数。要求最小,所以这个数减去1后就是3和5的最小公倍数。即这个数减去1后是15,所以这个数是15+1=16.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |