高斯定理的曲面积分怎样求解?

 我来答
百度网友ce448d6
2023-05-19
知道答主
回答量:28
采纳率:100%
帮助的人:1.3万
展开全部
想象有一个碗放在桌子上,开口向上,并建立直角坐标系;桌子平面为z=0,平面;碗里面的面为上侧曲面;向桌面投影后面积为正值,投影面就是一个圆;碗外面的面为下侧曲面;向桌面投影后面积为负值。

现在找一个纸板盖住碗口,z=1平面与碗的曲面相交;对于闭合曲面可以构成一个空间闭合区域;外侧就是指能摸到的那一侧;等于碗的外面,和纸板的上面,共同构成外侧;所以,在曲面积分中利用高斯定理时,一定要构造闭合曲面;

第一型曲面积分应该是标量型曲面积分,如在一空间曲面上分布着各点密度不同的质量、电荷分布,通过第一型曲面积分可求出该曲面的总质量或总电荷数等,变换一下也可以用于求体积。

第二型曲面积分应该是矢量型曲面积分,如在一空间曲面上分布着的各点,其各点的运动速度、在不均匀力场(重力场基本为均匀力场、电磁场有时为不均匀力场)各点的受力大小方向均不同,通过第二型曲面积分可求出整体的流量、及在力场中的受力方向及大小。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式