一道三角函数的题(要具体过程)
在锐角三角形中,设y=(tanA+tanB+tanC)/(sinA+sinB+sinC)问:y的值域...
在锐角三角形中,设y=(tanA+tanB+tanC)/(sinA+sinB+sinC)
问:y的值域 展开
问:y的值域 展开
展开全部
在锐角三角形有tanA+tanB+tanC=tanAtanBtanC,这个用和角公式就得出来了,因为是锐角,可以用均值不等式,之后得出tanA+tanB+tanC≥3√3
再有sinA+sinB+sinC≤3√3/2,这个利用函数凹凸性可以求得此三角不等式,现在当分母取最大,分子取最小时,显然Y取最小,而恰好可以同时取得(为正三角形时两不等式同时取等号),所以Y≥2,2是下限,至于上限,考虑到对称性以及这里直角三角形是极限情况,但取不到,直角时tan为+∞,即分子会出现一个+∞,而其他三角值均为常值,所以此时此式为+∞,它即为上限,但是取不到,综上有值域应该是[2,+∞)吧,不晓得是不是哈
再有sinA+sinB+sinC≤3√3/2,这个利用函数凹凸性可以求得此三角不等式,现在当分母取最大,分子取最小时,显然Y取最小,而恰好可以同时取得(为正三角形时两不等式同时取等号),所以Y≥2,2是下限,至于上限,考虑到对称性以及这里直角三角形是极限情况,但取不到,直角时tan为+∞,即分子会出现一个+∞,而其他三角值均为常值,所以此时此式为+∞,它即为上限,但是取不到,综上有值域应该是[2,+∞)吧,不晓得是不是哈
展开全部
y=(tanA+tanB+tanC)/(sinA+sinB+sinC)
=(sinA+sinB+sinC)/(sinAcosBcosC+sinBcosCcosA+sinCcosBcosA)
=(sinA+sinB+sinC)/(cosCsin(A+B)+sinCcosBcosA)
=(sinA+sinB+sinC)/(sinC(cosBcosA+cosC))
=(sinA+sinB+sinC)/(sinC(0.5cos(A+B)+0.5cos(A-B)+0.5cosC)
=(sinA+sinB+sinC)/(sinAcosBcosC+sinBcosCcosA+sinCcosBcosA)
=(sinA+sinB+sinC)/(cosCsin(A+B)+sinCcosBcosA)
=(sinA+sinB+sinC)/(sinC(cosBcosA+cosC))
=(sinA+sinB+sinC)/(sinC(0.5cos(A+B)+0.5cos(A-B)+0.5cosC)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先化简该式子
y=(tanA+tanB+tanC)/(sinA+sinB+sinC)
y=(sinA+sinB+sinC/cosA+cosB+cosC)/(sinA+sinB+sinC)
y=1/cosA+cosB+cosC
因为cosA+cosB+cosC作为分母不能为0
所以cosA+cosB+cosC≠0
既y≠0
应该是这样
是否还需考虑锐角三角形
我就不确定了
这个仅供参考啊
y=(tanA+tanB+tanC)/(sinA+sinB+sinC)
y=(sinA+sinB+sinC/cosA+cosB+cosC)/(sinA+sinB+sinC)
y=1/cosA+cosB+cosC
因为cosA+cosB+cosC作为分母不能为0
所以cosA+cosB+cosC≠0
既y≠0
应该是这样
是否还需考虑锐角三角形
我就不确定了
这个仅供参考啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据根与系数关系,X1+X2=-b/a,
X1X2=c/a
∵X1+X2=X1X2
∴c
×cosB=a
cosB=a/c
只有在直角三角形中此式成立,故△ABC为直角三角形
X1X2=c/a
∵X1+X2=X1X2
∴c
×cosB=a
cosB=a/c
只有在直角三角形中此式成立,故△ABC为直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询