已知tanA+tanB+tanC>0.求证三角形ABC是锐角三角形.

 我来答
黑科技1718
2022-08-26 · TA获得超过5886个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.3万
展开全部
tanA+tanB+tanC=tanA*tanB*tanC>0
所以tanA,tanB,tanC中有0个或者2个负数,
若有两个则有两个钝角,矛盾,所以全是锐角
其中非直角△中成立:
tanA+tanB+tanC=tanA*tanB*tanC
证明如下:
∵tan(A+B)=tanA+tanB/1-tanA*tanB
tan(A+B)=tan(π-C)=-tanC
∴tanA+tanB/1-tanA*tanB=-tanC
整理移项即得.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式