如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l与AB边相交于点D.过点C作

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设∠AOD=α.(... 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设∠AOD=α.(1)当α等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由. 展开
 我来答
左以兜9598
2015-02-01 · 超过75用户采纳过TA的回答
知道答主
回答量:130
采纳率:0%
帮助的人:160万
展开全部
(1)解法一:当∠α=30°时,四边形EDBC是等腰梯形.(1分)
当∠α=30°时,∠EDB=60°,
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,AB=4,(2分)
在等腰梯形EDBC中,过点C作DB的垂线CF,
则BF=
1
2
BC=1,
∴DB=1+1+EC,(3分)
所以AB=AD+DB=AD+2+EC,又AD=EC,
所以AB=2+2AD,即4=2+2AD,所以AD=1(4分)
解法二:当∠α=30°时,四边形EDBC是等腰梯形.(1分)
∴ED=BC=2
∵CE∥AB
∴∠A=∠ECA
∵点O是AC的中点
∴OA=OC
又∵∠α=∠EOC
∴△EOC≌△DOA(2分)
OD=OE=
1
2
ED=1
(3分)
∵∠A=∠α=30°
∴AD=OD=1;(4分)

(2)当∠α=90°时,四边形EDBC是菱形.
证明:∵∠α=∠ACB=90°,∴BC∥ED.
∵CE∥AB,∴四边形EDBC是平行四边形.(5分)
在Rt△ABC中,由(1)中解法一知:AB=4,由勾股定理得:AC=2
3

∴AO=
1
2
AC=
3

∵∠α=∠ACB=90°
∴OD∥BC,
∵O为AC中点,
∴OD是△ABC的中位线,
∴AD=
1
2
AB=2
∴BD=4-2=2,
∴BD=BC=2,(7分)
∴平行四边形EDBC是菱形.(8分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式