一道高中数学证明不等式题,急啊!
设a、b∈R,求证:|a+b|/1+|a+b|≤(|a|/1+|a|)+(|b|/1+|b|)...
设a、b∈R,求证:|a+b|/1+|a+b|≤(|a|/1+|a|)+(|b|/1+|b|)
展开
1个回答
展开全部
证明:因为|a+b|<=|a|+|b|
|a+b|(1+|a|+|b|)<=(|a|+|b|)(1+|a+b|)
故(|a+b|)/(1+|a+b|)<=(|a|+|b|)/(1+|a|+|b|)
(|a|+|b|)/(1+|a|+|b|)=|a|/(1+|a|+|b|)+|b|/(1+|a|+|b|)
|a|/(1+|a|+|b|)<=|a|/(1+|a|)
|b|/(1+|a|+|b|)<=|b|/(1+|b|)
故|a|/(1+|a|+|b|)+|b|/(1+|a|+|b|)<(|a|)/(1+|a|)+(|b|)/(1+|b|)
故(|a+b|)/(1+|a+b|)≤(|a|)/(1+|a|)+(|b|)/(1+|b|)
还有一种方法:http://zhidao.baidu.com/question/35135316.html?si=2。
|a+b|(1+|a|+|b|)<=(|a|+|b|)(1+|a+b|)
故(|a+b|)/(1+|a+b|)<=(|a|+|b|)/(1+|a|+|b|)
(|a|+|b|)/(1+|a|+|b|)=|a|/(1+|a|+|b|)+|b|/(1+|a|+|b|)
|a|/(1+|a|+|b|)<=|a|/(1+|a|)
|b|/(1+|a|+|b|)<=|b|/(1+|b|)
故|a|/(1+|a|+|b|)+|b|/(1+|a|+|b|)<(|a|)/(1+|a|)+(|b|)/(1+|b|)
故(|a+b|)/(1+|a+b|)≤(|a|)/(1+|a|)+(|b|)/(1+|b|)
还有一种方法:http://zhidao.baidu.com/question/35135316.html?si=2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询