关于x,y的方程x2+xy+2y2=29的整数解(x,y)的组数为(  )A.2组B.3组C.4组D.无穷多

关于x,y的方程x2+xy+2y2=29的整数解(x,y)的组数为()A.2组B.3组C.4组D.无穷多组... 关于x,y的方程x2+xy+2y2=29的整数解(x,y)的组数为(  )A.2组B.3组C.4组D.无穷多组 展开
 我来答
odsg601
2015-01-19 · TA获得超过151个赞
知道答主
回答量:123
采纳率:0%
帮助的人:142万
展开全部
可将原方程视为关于x的二次方程,将其变形为x2+yx+(2y2-29)=0.
由于该方程有整数根,则判别式△≥0,且是完全平方数.
由△=y2-4(2y2-29)=-7y2+116≥0,
解得y2
116
7
≈16.57
.于是
y2   0  4  16
 116  109  88  53  4
显然,只有y2=16时,△=4是完全平方数,符合要求.
当y=4时,原方程为x2+4x+3=0,此时x1=-1,x2=-3;
当y=-4时,原方程为x2-4x+3=0,此时x3=1,x4=3.
所以,原方程的整数解为
x1=?1
y1=4
x2=?3
y2=4
x3=1
y3=?4
x4=3
y4=?4.

故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式