已知各项均为正数的数列{an}的前n项和为Sn,且满足2Sn=an2+an.(1)求证:{an}为等差数列,并求数列{an}
已知各项均为正数的数列{an}的前n项和为Sn,且满足2Sn=an2+an.(1)求证:{an}为等差数列,并求数列{an}的通项公式;(2)设bn=2anlog122a...
已知各项均为正数的数列{an}的前n项和为Sn,且满足2Sn=an2+an.(1)求证:{an}为等差数列,并求数列{an}的通项公式;(2)设bn=2anlog 122an,数列{bn}的前n项和为Hn,求使得Hn+n?2n+1>50成立的最小正整数n.
展开
展开全部
(1)由2Sn=an2+an.①
得2Sn-1=an-12+an-1.②
①-②,得:2an=an2+an?an?12?an?1,
∴an+an?1=an2?an?12,
∴an-an-1=1,
∴{an}是公差为1的等差数列,
由2S1=a12+a1,得a1=1,
∴an=1+(n-1)×1=n.
(2)bn=2anlog
2an=-n?2n,
∴Hn=-(1×2+2×22+3×23+…+n×2n),
∴2Hn=-(22+2×23+3×24+…+n×2n+1),
∴Hn=2+22+23+…+2n-n×2n+1
=
?n×2n?1
=-n?2n+1+2n+1-2,
∵Hn+n?2n+1>50,
∴2n+1>52,
∴n的最小值为5.
得2Sn-1=an-12+an-1.②
①-②,得:2an=an2+an?an?12?an?1,
∴an+an?1=an2?an?12,
∴an-an-1=1,
∴{an}是公差为1的等差数列,
由2S1=a12+a1,得a1=1,
∴an=1+(n-1)×1=n.
(2)bn=2anlog
1 |
2 |
∴Hn=-(1×2+2×22+3×23+…+n×2n),
∴2Hn=-(22+2×23+3×24+…+n×2n+1),
∴Hn=2+22+23+…+2n-n×2n+1
=
2(1?2n) |
1?2 |
=-n?2n+1+2n+1-2,
∵Hn+n?2n+1>50,
∴2n+1>52,
∴n的最小值为5.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询