已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)

已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)写出其逆命题,判断其真假,并证明你的结论;(2)写... 已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论. 展开
 我来答
无话可说1u6
推荐于2017-09-18 · 超过62用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:141万
展开全部
(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0,真命题.
用反证法证明:
设a+b<0,则a<-b,b<-a,
∵f(x)是R上的增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),这与题设f(a)+f(b)≥f(-a)+f(-b)矛盾,所以逆命题为真.
(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),
则a+b<0,为真命题.
由于互为逆否命题同真假,故只需证原命题为真.
∵a+b≥0,∴a≥-b,b≥-a,
又∵f(x)在R上是增函数,
∴f(a)≥f(-b),f(b)≥f(-a).
∴f(a)+f(b)≥f(-a)+f(-b),
∴原命题真,故逆否命题为真.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式