在空间中任意两个向量都是共面向量?为什么空间中这一三个向量不一定是共面向量?
4个回答
展开全部
高中研究的向量叫做自由向量,自由向量规定向量在空间中可以自由平移,如果你可以理解向量共线就能够理解向量共面
还有,你的问题本身就有问题“两个向量是异面向量怎么解释它们是共面的”两个向量不可能异面的 你应该指的是异面直线的方向向量
你可以把它理解为一种规定,解释起来是很复杂的,因为向量是解决平面几何,解析几何和立体几何用的,是由几何到代数的一个纽带,一种数学工具
还有,你的问题本身就有问题“两个向量是异面向量怎么解释它们是共面的”两个向量不可能异面的 你应该指的是异面直线的方向向量
你可以把它理解为一种规定,解释起来是很复杂的,因为向量是解决平面几何,解析几何和立体几何用的,是由几何到代数的一个纽带,一种数学工具
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你想想,空间中两个任意向量,平移到共起点,就变成三点,三点共面,三个向量是四点,四点不一定共面
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询