有界数列就是有极限的数列吗?为什么

 我来答
督甘甄涵畅
2020-02-05 · TA获得超过3633个赞
知道大有可为答主
回答量:3042
采纳率:32%
帮助的人:217万
展开全部
不是.有界和有极限是2个概念,有界的数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界,假设存在定值a,任意n有an=b,称数列an有下界b,如果同时存在a,b,是的数列an的值在区间[a,b]内,数列数列有界,有界的数列不一定有极限,比如an=sin n,an在[-1,1]之间,但是an是一个震荡数列.
有极限的数列是指当n趋向无穷大时,an趋向于一个定值,(注意是“一个”定值,不能是2个,这个可以作为证明一个数列没有极限的反证),所以有极限的数列一定是有界的
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式