X趋于0时(1-x)^(1/x)的极限

 我来答
一个人郭芮
高粉答主

2016-07-06 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84684

向TA提问 私信TA
展开全部
这就相当于
a趋于无穷大,(1+1/a)^a的极限值趋于e
那么就得到
lim(x趋于0) [(1-x)^(-1/x)]^(-1)
显然(1-x)^(-1/x)极限值为e,
故原极限=1/e
刷刷自己6
2016-07-06 · TA获得超过6013个赞
知道大有可为答主
回答量:3096
采纳率:78%
帮助的人:450万
展开全部
一般人会用洛必达法则:

(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时 lim f(x)/F(x)=lim f'(x)/F'(x).
具体你的题目就是分子求导得到a^x*lna,分母求导得到1,再取极限x->0,分子变成lna,就是极限值.
但是题目要求的这个极限其实就是函数a^x在0处的导数值,因为导数本身就是由这个极限定义出来的.所以这里不应该再用求导的方法来做.下面的方法有点麻烦,但是却是这道题的最好的解答,你应该可以看得懂:
令a^x-1=t,根据指数函数连续性,当x->0时,t->0
然后,x=loga(1+t),(以a为底的对数)
(a^x-1)/x=t/[loga(1+t)] 并且 x->0变成是t->0的极限
因为[loga(1+t)]/t=loga[(1+t)^(1/t)]
并且,t->0时,[(1+t)^(1/t)]=e是显然的.
所以 [loga(1+t)]/t=loga[(1+t)^(1/t)] -> loga(e)
所以 (a^x-1)/x=t/[loga(1+t)] -> 1/loga(e)=lna。
望采纳谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式