X趋于0时(1-x)^(1/x)的极限
2个回答
展开全部
一般人会用洛必达法则:
设
(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时 lim f(x)/F(x)=lim f'(x)/F'(x).
具体你的题目就是分子求导得到a^x*lna,分母求导得到1,再取极限x->0,分子变成lna,就是极限值.
但是题目要求的这个极限其实就是函数a^x在0处的导数值,因为导数本身就是由这个极限定义出来的.所以这里不应该再用求导的方法来做.下面的方法有点麻烦,但是却是这道题的最好的解答,你应该可以看得懂:
令a^x-1=t,根据指数函数连续性,当x->0时,t->0
然后,x=loga(1+t),(以a为底的对数)
(a^x-1)/x=t/[loga(1+t)] 并且 x->0变成是t->0的极限
因为[loga(1+t)]/t=loga[(1+t)^(1/t)]
并且,t->0时,[(1+t)^(1/t)]=e是显然的.
所以 [loga(1+t)]/t=loga[(1+t)^(1/t)] -> loga(e)
所以 (a^x-1)/x=t/[loga(1+t)] -> 1/loga(e)=lna。
望采纳谢谢
设
(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时 lim f(x)/F(x)=lim f'(x)/F'(x).
具体你的题目就是分子求导得到a^x*lna,分母求导得到1,再取极限x->0,分子变成lna,就是极限值.
但是题目要求的这个极限其实就是函数a^x在0处的导数值,因为导数本身就是由这个极限定义出来的.所以这里不应该再用求导的方法来做.下面的方法有点麻烦,但是却是这道题的最好的解答,你应该可以看得懂:
令a^x-1=t,根据指数函数连续性,当x->0时,t->0
然后,x=loga(1+t),(以a为底的对数)
(a^x-1)/x=t/[loga(1+t)] 并且 x->0变成是t->0的极限
因为[loga(1+t)]/t=loga[(1+t)^(1/t)]
并且,t->0时,[(1+t)^(1/t)]=e是显然的.
所以 [loga(1+t)]/t=loga[(1+t)^(1/t)] -> loga(e)
所以 (a^x-1)/x=t/[loga(1+t)] -> 1/loga(e)=lna。
望采纳谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询