x,y,z为非负实数,x+y+z=1,求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)>=0

 我来答
黑科技1718
2022-05-24 · TA获得超过5872个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.7万
展开全部
x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)
=(X+Y+Z)-5(X*X+Y*Y+Z*Z)+6(X*X*X+Y*Y*Y+Z*Z*Z)
又有X+Y+Z>=3√XYZ
3√XYZ=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式