若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
1个回答
2014-02-07
展开全部
f(x)=(-2^x+1)/(2^(x+1)+2)
若对任意的t,不等式f(t^2-2t)+f(2t^2-k)<O恒成立,求k的取值范围
解:f(x)=-1/2+1/(2^x+1).
f(t^2-2t)+f(2t^2-k)=-1/2+1/[2^(t^2-2t)+1]-1/2+1/[2^(2t^2-k)+1]<0,
两边都乘以[2^(t^2-2t)+1] [2^(2t^2-k)+1],得
[2^(2t^2-k)+1]+ [2^(t^2-2t)+1]- [2^(t^2-2t)+1] [2^(2t^2-k)+1]<0,
两边都乘以2^k,得
[2^(2t^2)+2^k]+2^k [2^(t^2-2t)+1]- [2^(t^2-2t)+1] [2^(2t^2)+2^k]<0,
化简得 2^k<2^(3t^2-2t),k<3t^2-2t=3(t-1/3)^2-1/3对任意的t成立,
∴k<-1/3,为所求。
若对任意的t,不等式f(t^2-2t)+f(2t^2-k)<O恒成立,求k的取值范围
解:f(x)=-1/2+1/(2^x+1).
f(t^2-2t)+f(2t^2-k)=-1/2+1/[2^(t^2-2t)+1]-1/2+1/[2^(2t^2-k)+1]<0,
两边都乘以[2^(t^2-2t)+1] [2^(2t^2-k)+1],得
[2^(2t^2-k)+1]+ [2^(t^2-2t)+1]- [2^(t^2-2t)+1] [2^(2t^2-k)+1]<0,
两边都乘以2^k,得
[2^(2t^2)+2^k]+2^k [2^(t^2-2t)+1]- [2^(t^2-2t)+1] [2^(2t^2)+2^k]<0,
化简得 2^k<2^(3t^2-2t),k<3t^2-2t=3(t-1/3)^2-1/3对任意的t成立,
∴k<-1/3,为所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询