已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求
已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;(2)若...
已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;(2)若数列{cn}为等比数列,且bn+1≥bn,求证:数列{an}为等比数列.
展开
1个回答
展开全部
解答:证明:(1)因为数列{an}为等比数列,所以
=q(q为常数),
又因为cn=anan+12.
所以
=
=q3为常数,所以数列{cn}为等比数列;
(2)因为数列{cn}是等比数列,所以
=q(q为常数),
所以
=
=
=q(q为常数),
则
=
,
所以
=
,
∵bn=
,
故bn+22=bn+1?bn.
因为bn+1≥bn,所以bn+2≥bn+1,则bn+22≥bn+12≥bn+1?bn.
所以bn+2=bn+1=bn.
∴
=
,即an+3=an+1?
.
因为数列{cn}是等比数列,所以
=
,即
=
,
把an+3=an+1?
代入化简得an+12=an?an+2,
所以数列{an}为等比数列.
an+1 |
an |
又因为cn=anan+12.
所以
cn+1 |
cn |
an+1?
| ||
an
|
(2)因为数列{cn}是等比数列,所以
cn+1 |
cn |
所以
cn+1 |
cn |
an+1?
| ||
an
|
| ||
an
|
则
| ||
an
|
| ||
an+2
|
所以
| ||
|
an+2?an+3 | ||
an
|
∵bn=
an+2 |
an |
故bn+22=bn+1?bn.
因为bn+1≥bn,所以bn+2≥bn+1,则bn+22≥bn+12≥bn+1?bn.
所以bn+2=bn+1=bn.
∴
an+3 |
an+1 |
an+2 |
an |
an+2 |
an |
因为数列{cn}是等比数列,所以
cn+1 |
cn |
cn+2 |
cn+1 |
| ||
an
|
| ||
an+1
|
把an+3=an+1?
an+2 |
an |
所以数列{an}为等比数列.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询