已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______....
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.
展开
2个回答
展开全部
由x2+xy+y2-2=0得:x2+2xy+y2-2-xy=0,
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤
,
∴-2≤xy≤
,
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
×(-2),即-
≤-2xy≤4,
两边同时加上2得:-
+2≤2-2xy≤4+2,即
≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
≤M≤6.
故答案为:
≤M≤6
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤
2 |
3 |
∴-2≤xy≤
2 |
3 |
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
2 |
3 |
4 |
3 |
两边同时加上2得:-
4 |
3 |
2 |
3 |
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
2 |
3 |
故答案为:
2 |
3 |
展开全部
解:由x²+xy+y²-2=0得:x²+2xy+y²-2-xy=0,
即(x+y)²=2+xy≥0,所以xy≥-2;
由x²+xy+y²-2=0得:x²-2xy+y²-2+3xy=0,
即(x-y)²=2-3xy≥0,所以xy≤2/3
∴-2≤xy≤2/3
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥-2*2/3
,即
-4/3≤-2xy≤4,
两边同时加上2得:
-4/3+2≤2-2xy≤4+2,即
2/3≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是2/3≤M≤6,
即(x+y)²=2+xy≥0,所以xy≥-2;
由x²+xy+y²-2=0得:x²-2xy+y²-2+3xy=0,
即(x-y)²=2-3xy≥0,所以xy≤2/3
∴-2≤xy≤2/3
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥-2*2/3
,即
-4/3≤-2xy≤4,
两边同时加上2得:
-4/3+2≤2-2xy≤4+2,即
2/3≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是2/3≤M≤6,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询