如图:三角形ABC中,角平分线AD,BE,CF相交于点H ,过H 点做HG垂直于AC,垂足为G ,求证角1+角2+角3=90度

犯贱的哥
2014-04-26
知道答主
回答量:13
采纳率:0%
帮助的人:6万
展开全部
简单回答是:∵角平分线AD,BE,CF相交于点H(已知)
∴角1=角DAC,角2=角HBD,角3=角HCD(角平分线的定义)
又∵角1+角DAC+角2+角HBD+角3+角HCD=180°(三角形内角和180°)
∴角1+角2+角3=180°/2=90°
纯手打求采纳。
百度网友c990ae0
2014-04-26 · TA获得超过627个赞
知道小有建树答主
回答量:850
采纳率:0%
帮助的人:704万
展开全部
∠AHE=∠1+∠2=1/2(∠BAC+∠ABC)
∠CHG=90°-∠3=90°-1/2∠ACB
∵∠BAC+∠ABC+∠ACB=180°
∴∠BAC+∠ABC=180°-∠ACB
∴1/2(∠BAC+∠ABC)=90°-1/2∠ACB
即∠AHE=∠CHG
又∠AHE=∠1+∠2,∠CHG+∠3=90°
∴∠1+∠2+∠3=90°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式