矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.(

矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.(1)当A′与B重合时,(如图1),EF=_____... 矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.(1)当A′与B重合时,(如图1),EF=______;当折痕EF过点D时(如图2),求线段EF的长;(2)观察图3和图4,设BA′=x,①当x的取值范围是______时,四边形AEA′F是菱形;②在①的条件下,利用图4证明四边形AEA′F是菱形. 展开
 我来答
天然殆216
推荐于2016-12-01 · TA获得超过964个赞
知道答主
回答量:115
采纳率:0%
帮助的人:144万
展开全部
(1)当A′与B重合时,如图1,把矩形对折,所以EF=AD=5.
故答案为:5;
如图2,DC=AB=3,A′F=AD=5,
在Rt△A′CF中,A′C=
A′F2?FC2
=4,
设AE=t,则BE=3-t,EA′=t,
在Rt△EBA′中,BA′=BC-A′C=5-4=1,
∵BE2+BA′2=EA′2
∴(3-t)2+12=t2,解得t=
5
3

在Rt△AEF中,AE=
5
3
,AF=5,
∴EF=
(
5
3
)2+52
=
5
10
3


(2)①当折痕FE过B点时,四边形AEA′F是正方形,BA′最小,此时BA′=BA=3;当点A的对应点A′落在C点时,BA′=5,于是得到x的取值范围是3≤x≤5,四边形AEA′F是菱形,
故答案为:3≤x≤5;
②如图4,∵△AEF沿EF折叠到△A′EF,
∴EA=EA′,FA=FA′,∠AEF=∠A′EF,
∵四边形ABCD为矩形,
∴AF∥EC,
∴∠A′EF=∠AFE,
∴∠A′FE=∠A′EF,
∴A′E=A′F,
∴AE=EA′=A′F=FA,
∴四边形AEA′F是菱形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式