求sinx分之1的不定积分的过程
2个回答
展开全部
1/sinx不定积分是ln|cscx - cotx| + C。微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
1/sinx不定积分
1/sinx求不定积分步骤
∫ 1/sinx dx
= ∫ cscx dx
= ∫ cscx * (cscx - cotx)/(cscx - cotx) dx
= ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx
= ∫ d(cscx - cotx)/(cscx - cotx)
= ln|cscx - cotx| + C
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
1/sinx不定积分
1/sinx求不定积分步骤
∫ 1/sinx dx
= ∫ cscx dx
= ∫ cscx * (cscx - cotx)/(cscx - cotx) dx
= ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx
= ∫ d(cscx - cotx)/(cscx - cotx)
= ln|cscx - cotx| + C
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询