求(cosx)^4的原函数

 我来答
京斯年0GZ
2022-09-09 · TA获得超过6204个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.2万
展开全部
∫(cosx)^4dx
=∫(cosx)^3d(sinx)
=sinx(cosx)^3-∫sinxd[(cosx)^3]
=sinx(cosx)^3-3∫sinx(cosx)^2d(cosx)
=sinx(cosx)^3+3∫(sinxcosx)^2dx
=sinx(cosx)^3+(3/4)∫(sin2x)^2dx
=sinx(cosx)^3+(3/8)∫(1-cos4x)dx
=sinx(cosx)^3+(3/8)∫dx-(3/32)∫cos4xd(4x)
=(3/8)x+sinx(cosx)^3-(3/32)sin4x+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式