谁帮我用数学归纳法证明这道题

1*n+2*(n-1)+3*(n-2)+...+n*1=1\6n(n+1)(n+2)... 1*n+2*(n-1)+3*(n-2)+...+n*1=1\6n(n+1)(n+2) 展开
soso7410
2010-04-11 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1907
采纳率:0%
帮助的人:3027万
展开全部
n=1时,左边=1*1=1
右边=1/6*1*2*3=1
左边=右边,等式成立!
假设n=k时成立 (k>1)即:
1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2)
当n=k+1时;
左边
=1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1
=1*k+1*1+2(k-1)+2*1+…+k*1+k+(k+1)
=[1*k+2(k-1)+…+(k-1)*2+k*1]+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1/2*(k+1)*(k+2)
=(1/6)(k+1)(k+2)(k+3)
=(1/6)(k+1)[(k+1)+1][(k+1)+2]
=右边
原式也成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式