2016-12-28
展开全部
两边同时求导:
1/√(x²+y²) * (2x+2yy′)/[2√(x²+y²) = 1/(1+x²/y²) * (y-xy′)/y²
(x+yy′)/(x²+y²) = y²/(y²+x²) * (y-xy′)/y²
x+yy′ = y-xy′
xy′+yy′ = y-x
y ′ = (y-x)/(y+x) = (y+x-2x)/(y+x) = 1 - 2x/(x+y)
继续两边求导:
y ′′ = {2(x+y)-2x(1+y′)}/(x+y)²
= 2y{1-y′)}/(x+y)²
= 2{1-1 +2x/(x+y)}/(x+y)²
= 4x/(x+y)³
1/√(x²+y²) * (2x+2yy′)/[2√(x²+y²) = 1/(1+x²/y²) * (y-xy′)/y²
(x+yy′)/(x²+y²) = y²/(y²+x²) * (y-xy′)/y²
x+yy′ = y-xy′
xy′+yy′ = y-x
y ′ = (y-x)/(y+x) = (y+x-2x)/(y+x) = 1 - 2x/(x+y)
继续两边求导:
y ′′ = {2(x+y)-2x(1+y′)}/(x+y)²
= 2y{1-y′)}/(x+y)²
= 2{1-1 +2x/(x+y)}/(x+y)²
= 4x/(x+y)³
更多追问追答
追问
我算的答案和你的不一样,y'是一样的。
追答
啊?
你的结果如何?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询