已知数列{an}的前n项和为Sn,且Sn+2n=3n²。(1)求证:数列{an}为等差数列;
1个回答
展开全部
(1)
Sn=3n²-2n
n=1时,a1=S1=3·1²-2·1=1
n≥2时,an=Sn-S(n-1)=3n²-2n-[3(n-1)²-2(n-1)]=6n-5
an-a(n-1)=(6n-5)-[6(n-1)-5]=6,为定值
数列{an}是以1为首项,6为公差的等差数列
(2)
an=6n-5
bn=3/[ana(n+1)]
=3/[(6n-5)(6n+1)]
=½[1/(6n-5) -1/(6(n+1)-5)]
Tn=½[1 -1/7 +1/7 -1/13+...+1/(6n-5)-1/(6(n+1)-5)]
=½[1- 1/(6n+1)]
=3n/(6n+1)
Sn=3n²-2n
n=1时,a1=S1=3·1²-2·1=1
n≥2时,an=Sn-S(n-1)=3n²-2n-[3(n-1)²-2(n-1)]=6n-5
an-a(n-1)=(6n-5)-[6(n-1)-5]=6,为定值
数列{an}是以1为首项,6为公差的等差数列
(2)
an=6n-5
bn=3/[ana(n+1)]
=3/[(6n-5)(6n+1)]
=½[1/(6n-5) -1/(6(n+1)-5)]
Tn=½[1 -1/7 +1/7 -1/13+...+1/(6n-5)-1/(6(n+1)-5)]
=½[1- 1/(6n+1)]
=3n/(6n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询