已知F是双曲线x2/4-y2/12=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为?.
A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9...
A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),
∴由双曲线性质|PF|-|PF′|=2a=4
而|PA|+|PF′|≥|AF′|=5
两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.
故答案为9,那如果我做F关于双曲线右支的对称点F2(6,0),这样他的长度就会比9还小,为什么我这么做不行 展开
∴由双曲线性质|PF|-|PF′|=2a=4
而|PA|+|PF′|≥|AF′|=5
两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.
故答案为9,那如果我做F关于双曲线右支的对称点F2(6,0),这样他的长度就会比9还小,为什么我这么做不行 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询