数列an a1=-1 a2>a1 绝对值a(n+1)-an=2的n次方 若a(2n-1)单调递减

数列ana1=-1a2>a1绝对值a(n+1)-an=2的n次方若a(2n-1)单调递减a2n单调递增数列an的通项公式为... 数列an a1=-1 a2>a1 绝对值a(n+1)-an=2的n次方 若a(2n-1)单调递减 a2n单调递增 数列an的通项公式为 展开
 我来答
SNOWHORSE70121
推荐于2016-10-23 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4806
采纳率:100%
帮助的人:2606万
展开全部
|a(n+1) - a(n)| = 2^n,

2 = |a(2) - a(1)| = a(2) - a(1) = a(2) + 1, a(2) = 1.

a(2n-1)单调递减,a(2n-1) <= a(1) = -1 < 0.

a(2n)单调递增,a(2n)>= a(2) = 1 >0.

2^(2n) = |a(2n+1) - a(2n)| = a(2n) - a(2n+1),
2^(2n-1) = |a(2n) - a(2n-1)| = a(2n) - a(2n-1),

-2^(2n-1) = 2^(2n-1) - 2^(2n) = [a(2n) - a(2n-1)] - [a(2n) - a(2n+1)] = a(2n+1) - a(2n),
a(2n+1) = a(2n) - 2^(2n-1) = a(2n-1) - 2*2^(2n-2) = a(2n-1) - 2*4^(n-1),
a(2n+1)/4^n = (1/4)a(2n-1)/4^(n-1) - 1/2,
a(2n+1)/4^n + 2/3 = (1/4)[a(2n-1)/4^(n-1)] + 1/6 = (1/4)[ a(2n-1)/4^(n-1) + 2/3 ]
{a(2n-1)/4^(n-1) + 2/3}是首项为a(1) + 2/3 = -1/3, 公比为(1/4)的等比数列。
a(2n-1)/4^(n-1) + 2/3 = (-1/3)(1/4)^(n-1),

a(2n-1) + (2/3)4^(n-1) = -1/3,
a(2n-1) = -1/3 -(2/3)4^(n-1) = -1/3 - (2/3)2^(2n-2) = -1/3 - (1/3)2^(2n-1)

a(2n) = 2^(2n-1) + a(2n-1) = 2*2^(2n-2) + a(2n-1) = 2*4^(n-1) - 1/3 - (2/3)4^(n-1)
= (4/3)4^(n-1) - 1/3
= -1/3 + (1/3)4^n
= -1/3 + (1/3)2^(2n).

a(2n-1) = -1/3 - (1/3)2^(2n-1) = -1/3 + (1/3)(-2)^(2n-1)
a(2n) = -1/3 + (1/3)2^(2n) = -1/3 + (1/3)(-2)^(2n)

{a(n)}的通项公式为,
a(n) = -1/3 + (1/3)(-2)^n,
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式