周长为30,各边长互不相等且都是整数的三角形共有多少个?
1个回答
展开全部
设三角形三边为a、b、c,且a<b<c.
∵a+b+c=30,a+b>c
∴10<c<15
∵c为整数
∴c为11,12,13,14
∵①当c为14时,有5个三角形,分别是:14,13,3;14,12,4;14,11,5;14,10,6;14,9,7;
②当c为13时,有4个三角形,分别是:13,12,5;13,11,6;13,10,7;13,9,8;
③当c为12时,有2个三角形,分别是:12,11,7;12,10,8;
④当c为11时,有1个三角形,分别是:11,10,9;
∴各边长互不相等且都是整数的三角形共有12个.
∵a+b+c=30,a+b>c
∴10<c<15
∵c为整数
∴c为11,12,13,14
∵①当c为14时,有5个三角形,分别是:14,13,3;14,12,4;14,11,5;14,10,6;14,9,7;
②当c为13时,有4个三角形,分别是:13,12,5;13,11,6;13,10,7;13,9,8;
③当c为12时,有2个三角形,分别是:12,11,7;12,10,8;
④当c为11时,有1个三角形,分别是:11,10,9;
∴各边长互不相等且都是整数的三角形共有12个.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询