高中数学!!!求解
展开全部
1.
令√x=t,则x=t²
x:0→1,则t:0→1
∫[0:1]e^√xdx
=∫[0:1]e^td(t²)
=2∫[0:1]t·e^tdt
=2(t-1)e^t|[0:1]
=2[(1-1)·e-(0-1)·1]
=2
2.
∫[-2:2][e^x/(e^x+1)]dx
=ln(e^x +1)|[-2:2]
=ln[(e²+1)/(e⁻²+1)]
=ln(e²)
=2
4.
∫[-π/2:π/2](x³+1)cosxdx
=∫[-π/2:π/2]x³cosxdx+2∫[0:π/2]cosxdx
=0+2sinx|[0:π/2]
=2·(1-0)
=2
令√x=t,则x=t²
x:0→1,则t:0→1
∫[0:1]e^√xdx
=∫[0:1]e^td(t²)
=2∫[0:1]t·e^tdt
=2(t-1)e^t|[0:1]
=2[(1-1)·e-(0-1)·1]
=2
2.
∫[-2:2][e^x/(e^x+1)]dx
=ln(e^x +1)|[-2:2]
=ln[(e²+1)/(e⁻²+1)]
=ln(e²)
=2
4.
∫[-π/2:π/2](x³+1)cosxdx
=∫[-π/2:π/2]x³cosxdx+2∫[0:π/2]cosxdx
=0+2sinx|[0:π/2]
=2·(1-0)
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询