一个关于导数的证明题~在线等!急急急!

证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】如... 证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】 如有正确详细解答,再加分~谢谢~ 展开
kuangxiao0716
2010-06-03 · TA获得超过1001个赞
知道小有建树答主
回答量:537
采纳率:0%
帮助的人:263万
展开全部
F'(X)=2xf(x)+f'(x)x2
F'(0)=0 F'(1)=0
则 根据拉格朗日中值定理 得 必存在一点ξ
使得F(ξ)=[F'(0)-F'(1)]/0-1
即 F''(ξ)=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式