将正方形ABCD绕中心O顺时针旋转角α得到正方形A1B1C1D1,如图1所示.(1)当α=45°时(如图2),若线段O

将正方形ABCD绕中心O顺时针旋转角α得到正方形A1B1C1D1,如图1所示.(1)当α=45°时(如图2),若线段OA与边A1D1的交点为E,线段OA1与AB的交点为F... 将正方形ABCD绕中心O顺时针旋转角α得到正方形A1B1C1D1,如图1所示.(1)当α=45°时(如图2),若线段OA与边A1D1的交点为E,线段OA1与AB的交点为F,可得下列结论成立 ①△EOP≌△FOP;②PA=PA1,试选择一个证明.(2)当0°<α<90°时,第(1)小题中的结论PA=PA1还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程中,记正方形A1B1C1D1与AB边相交于P,Q两点,探究∠POQ的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出∠POQ的度数. 展开
 我来答
芯姐姐106
推荐于2016-06-30 · 超过77用户采纳过TA的回答
知道答主
回答量:138
采纳率:100%
帮助的人:68.7万
展开全部
解答:(1)若证明①△EOP≌△FOP
当α=45°时,即∠AOA1=45°,又∠PAO=45°
∴∠PFO=90°,同理∠PEO=90°
EO=FO=
AB
2

在Rt△EOP和Rt△FOP中,有
OE=OF
OP=OP

∴△EOP≌△FOP
若证明②PA=PA1
法一证明:连接AA1,则∵O是两个正方形的中心,∴OA=OA1∠PA1O=∠PAO=45°
∴∠AA1O=∠A1AO
∴∠AA1O-∠PA1O=∠A1AO-∠PAO
即∠AA1P=∠A1AP∴PA=PA1
法二:证明,同①先证明△EOP≌△FOP
得∠EPO=∠FPO
∵∠APE=∠A1PF∴∠APE+∠EPO=∠A1PF+∠FPO即∠APO=∠A1PO(2分)
在△APO和△A1PO中有
OP=OP
∠APO=∠A1PO
∠PAO=∠PA1O=45°

∴△APO≌△A1PO
∴PA=PA1
(2)成立
证明如下:法一证明:连接AA1,则∵O是两个正方形的中心,∴OA=OA1∠PA1O=∠PAO=45°
∴∠AA1O=∠A1AO
∴∠AA1O-∠PA1O=∠A1AO-∠PAO
即∠AA1P=∠A1AP∴PA=PA1
法二
如图,作OE⊥A1D1,OF⊥AB,垂足分别为E,F
则OE=OF,∠PFO=90°,∠PEO=90°
在Rt△EOP和Rt△FOP中,有
OE=OF
OP=OP

∴△EOP≌△FOP∠EPO=∠FPO
∵∠APE=∠A1PF∴∠APE+∠EPO=∠A1PF+∠FPO即∠APO=∠A1PO
在△APO和△A1PO中有
OP=OP
∠APO=∠A1PO
∠PAO=∠PA1O=45°

∴△APO≌△A1PO
∴PA=PA1
(3)不变化,在旋转过程中,∠POQ的度数不发生变化,∠POQ=45°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式