如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于
如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于点R,且RP=RQ(1)求证:直线QR是⊙O的切线;(...
如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于点R,且RP=RQ(1)求证:直线QR是⊙O的切线;(2)若OP=PA=1,试求RQ的长.
展开
2个回答
展开全部
(1)连接OQ,
因为RP=RQ
所以∠RQP=∠RPQ=∠OPB,
因为BO=OQ,
所以∠OQB=∠OBQ
因为∠AOB=90°
,
所以∠OPB+∠OPQ=90°,
则∠OQR=∠OQB+∠RQP=∠OBP+∠OPB=90°,
所以直线QR是⊙O的切线;
(2)因为OP=PA=1,
所以OA=OQ=2,
设RQ=RP=x,则OR=x+1,
在Rt△ROQ中,x^2+4=(x+1)^2,
解得x=3/2
,即RQ的长3/2.
因为RP=RQ
所以∠RQP=∠RPQ=∠OPB,
因为BO=OQ,
所以∠OQB=∠OBQ
因为∠AOB=90°
,
所以∠OPB+∠OPQ=90°,
则∠OQR=∠OQB+∠RQP=∠OBP+∠OPB=90°,
所以直线QR是⊙O的切线;
(2)因为OP=PA=1,
所以OA=OQ=2,
设RQ=RP=x,则OR=x+1,
在Rt△ROQ中,x^2+4=(x+1)^2,
解得x=3/2
,即RQ的长3/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询