如图,AB⊥BC,DC⊥BC,垂足分别为B、C.(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果

如图,AB⊥BC,DC⊥BC,垂足分别为B、C.(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由... 如图,AB⊥BC,DC⊥BC,垂足分别为B、C.(1)当AB=4,DC=1,BC=4时,在线段BC上是否点P,使AP⊥PD?如果存在求线段BP的长;如果不存在,请说明理由;(2)设AB=a,DC=b,AD=c,那么当a、b、c之间满足什么关系时,在直线BC上存在点P,使AP⊥PD. 展开
 我来答
浔子0002D
推荐于2017-09-22 · TA获得超过204个赞
知道答主
回答量:138
采纳率:0%
帮助的人:178万
展开全部
解答:解:(1)存在.
如图所示,AP⊥PD,
∴∠APD=90°,
∴∠APB+∠DPC=90°,
又∵DC⊥BC,
∴∠DCP=90°,
∴∠PDC+∠DPC=90°,
∴∠APB=∠PDC,
∵∠B=∠C,
∴△ABP∽△PCD,
设BP=x,则CP=4-x,
AB
PC
=
BP
CD
,即4:(4-x)=x:1,
即x(4-x)=4,
∴x2-4x+4=0,
即(x-2)2=0,
得出x=2,即BP=2;

(2)过D作DE⊥AB于E,
易得DC=BE=b,AE=a-b,BC=DE=
AD2?(AB?CD)2
=
c2?(a?b)2

由(1)得△ABP∽△PCD,设PC=x,
x
a
=
b
c2?(a?b)2
? x

化简得方程:x4-(c2-a2-b2)x2+a2b2=0,
若存在点P,则方程有实数根,
∴△=(c2-a2-b22-4a2b2=(c2-a2-b2+2ab)(c2-a2-b2-2ab)=[(c2-(a-b)2][c2-(a+b)2]≥0,
∵c>a-b,
∴c2-(a+b)2≥0,
∴c≥a+b,
∴当c≥a+b时,在直线BC上存在点P,使AP⊥PD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式