2个回答
展开全部
例如二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别链态弊式的符号,其通解有三种形式闭迹:
1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通棚族解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];
2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];
3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。
至于n阶以及非齐次线性方程的情况,高数上都有,如果需要,还是把具体的题目发上来吧
1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通棚族解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];
2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];
3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。
至于n阶以及非齐次线性方程的情况,高数上都有,如果需要,还是把具体的题目发上来吧
追问
我不是说题目了吗……
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询