已知a>0,求函数y=x²+a+1/√(x²+a)的最小值
2个回答
展开全部
(1)当0<a≤1时, 1-a≥0,
依基本不等式得
y=(x²+a+1)/√(x²+a)
=√(x²+a)+1/√(x²+a)
≥2·√[√(x²+a)·1/√(x²+a)]
=2,
∴所求最小值为:y|min=2.
此时,
√(x²+a)=1/√(x²+a)
→x=±√(1-a) (0<a≤1).
(2)当a>1时,设t=√(x²+a)≥√a,
则构造对勾函数f(t)=t+1/t.
依对勾函数单调性,t∈[1,+∞)时递增,
f(t)≥f(√a)=√a+1/√a.
∴所求最小值为:y|min=√a+1/√a.
显然,此时x=0。
注:
a>1时是不能用基本不等式的,
因为,取等时
√(x²+a)=1/√(x²+a)→x²=1-a<0。
依基本不等式得
y=(x²+a+1)/√(x²+a)
=√(x²+a)+1/√(x²+a)
≥2·√[√(x²+a)·1/√(x²+a)]
=2,
∴所求最小值为:y|min=2.
此时,
√(x²+a)=1/√(x²+a)
→x=±√(1-a) (0<a≤1).
(2)当a>1时,设t=√(x²+a)≥√a,
则构造对勾函数f(t)=t+1/t.
依对勾函数单调性,t∈[1,+∞)时递增,
f(t)≥f(√a)=√a+1/√a.
∴所求最小值为:y|min=√a+1/√a.
显然,此时x=0。
注:
a>1时是不能用基本不等式的,
因为,取等时
√(x²+a)=1/√(x²+a)→x²=1-a<0。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |