已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.(Ⅰ)求f(x

已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=f(x)-1在区... 已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],求m和n的值. 展开
 我来答
花开玉如仙1588
2015-01-08 · TA获得超过115个赞
知道答主
回答量:147
采纳率:83%
帮助的人:60万
展开全部
(Ⅰ)由题意,函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
∴可设f(x)=a(x+1)2=ax2+2ax+a
与函数f(x)=ax2+bx+1比较可得a=1
∴f(x)的解析式为f(x)=(x+1)2
(Ⅱ)g(x)=(x+1)2-1≥-1
∵g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],
∴m≥-1
∴g(x)=f(x)-1在区间[m,n]上单调增
(m+1)2?1=m
(n+1)2?1=n

∴m,n是方程(x+1)2-1=x的两根
即m,n是方程x2+x=0的两根
∵m<n
∴m=-1,n=0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式