抽象函数的单调性 高一数学
展开全部
解:(1)∵对任何x和y,f(x+y)=f(x)•f(y)
令y=0
则f(x)=f(x)•f(0)
又∵存在x 1≠x 2,使得f(x 1)≠f(x 2),
即函数不为常数函数,即f(x)=0不成立
∴f(0)=1.
(2)令y=x≠0,
则f(2x)=f(x)•f(x)=f 2(x)≥0
又由(1)中f(x)≠0,
∴f(2x)>0,即f(x)>0,
故对任意x,f(x)>0恒成立.
令y=0
则f(x)=f(x)•f(0)
又∵存在x 1≠x 2,使得f(x 1)≠f(x 2),
即函数不为常数函数,即f(x)=0不成立
∴f(0)=1.
(2)令y=x≠0,
则f(2x)=f(x)•f(x)=f 2(x)≥0
又由(1)中f(x)≠0,
∴f(2x)>0,即f(x)>0,
故对任意x,f(x)>0恒成立.
更多追问追答
追答
采纳可好?
追问
为什么要设y为0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |