已知a∈R,f(x)=a*2^x+a-2/2^x+1试求使f(x)为增函数的a值

已知a∈R,f(x)=a*2^x+a-2/2^x+1(x∈R)试求使f(x)为增函数的a值答出,有过程加分... 已知a∈R,f(x)=a*2^x+a-2/2^x+1(x∈R)试求使f(x)为增函数的a值
答出,有过程加分
展开
匿名用户
2014-01-14
展开全部
f(x)=[a(2^x+1)-2]/(2^x+1)=a-2/(2^x+1)
因为2^x+1是增函数
所以2/(2^x+1)是减函数
所以-2/(2^x+1)是增函数
而a是常数,不影响单调性
所以a属于R

【解】:
(1) 首先由f(-x)=-f(x)得到:
(a•2^(-x)+a-2)/(2^(-x)+1)= - (a•2^x+a-2)/(2^x+1);
由于2^(-x)=1/2^x, 所以:
[a+(a-2)•2^x]/(2^x+1)=- (a•2^x+a-2)/(2^x+1);
即:
a+(a-2)•2^x =- (a•2^x+a-2);
上式对任意x∈R都成立,故有:
a-2=-a, 所以a=1;

f(x)=[a(2^x+1)-2]/(2^x+1)=a-2/(2^x+1)
因为2^x+1是增函数
所以2/(2^x+1)是减函数
所以-2/(2^x+1)是增函数
而a是常数,不影响单调性
所以a属于R

若f(x)=(a×2^x+a-2)/(2^x+1)为奇函数。〔1〕求a的值,并证明f(x)在R上是增函数;〔2〕求f(x)的值域。
2.(2) 所以f(x)=(2^x-1)/ (2^x+1);由于对x∈R,2^x>0,
对于y>0,f(y)=(y-1)/(y+1)= (y+1-2)/(y+1)=1-2/(y+1);
f(y)在y>0时递增,所以,而2x为x的递增函数,所以f(x)为递增函数;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式