已知函数f(x)=2sin(1/2x+∅),∅∈(0,π/2),f(0)=根号3.求f(x)的解析式 5
2个回答
2020-02-26
展开全部
f(0)=√3=2sin(0.5*0+φ)
sinφ=√3/2,又因为φ∈(0,π/2),所以φ=π/3
f(x)=2sin(1/2x+π/3)
f'(x)=0.5*2*cos(1/2x+π/3)=cos(1/2x+π/3)
令f'(x)=0,解得x=π/3 (就区间(0,π)而言)
所以f(x)在区间(0,π/3)单调递增,在区间(π/3,π)单调递减
f(x)max=f(π/3)=2sin(0.5*π/3+π/3)=2
f(x)min=f(π)=2sin(0.5*π+π/3)=2*1/2=1
sinφ=√3/2,又因为φ∈(0,π/2),所以φ=π/3
f(x)=2sin(1/2x+π/3)
f'(x)=0.5*2*cos(1/2x+π/3)=cos(1/2x+π/3)
令f'(x)=0,解得x=π/3 (就区间(0,π)而言)
所以f(x)在区间(0,π/3)单调递增,在区间(π/3,π)单调递减
f(x)max=f(π/3)=2sin(0.5*π/3+π/3)=2
f(x)min=f(π)=2sin(0.5*π+π/3)=2*1/2=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询