f(x)在[0,1]上非负单调减少,0<a<b<1,证明∫(0到a)f(x)dx>=a/b∫(a到b)f(x)dx

 我来答
谢增岳巩环
2020-04-22 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:768万
展开全部
分情况讨论一下,有一种情况想了半天还没想出来。
(1)当f(x)为在[0,b]上单调下降的正值连续函数时
有:左边>b∫[0,a]f(a)dx=abf(a)
右边所以左边>右边。
(2)当f(x)为在[0,b]上为常数c时
有:左边=abc
右边=abc-a²c
所以左边≥右边当c等于0时等号成立。
(3)当f(x)为在[0,b]上单调上升的正值连续函数时
(这种情况还没想出来怎么处理,你有好的办法吗?)
百度网友96bc728e73b
2020-01-04 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:29%
帮助的人:913万
展开全部
证明:
在(0,a)取一点ξ1,使得∫(0到a)f(x)dx
=
f(ξ1)
(a-0)-------定积分中值定理
同理,在(a,b)取一点ξ2,使得

(a到b)
f(x)dx
=
f(ξ2)
(b-a)
因为题设
f(x)在[0,1]上非负单调减少,
所以
f(ξ1)
>
f(ξ2)
a/b
∫(a到b)
f(x)dx
=
a/b
(b-a)
f(ξ2)=a(1-a/b)
f(ξ2)
而1-a/b<1.
即a(a-a/b)
f(ξ2)
<
a
f(ξ2)
∫(0到a)f(x)dx
=
f(ξ1)
(a-0)
=a
f(ξ1)
>
a
f(ξ2)
>a(a-a/b)
f(ξ2)=a/b∫(a到b)f(x)dx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式