解三角形问题

已知△ABC的面积为1/4(a²+b²-c²),则C的度数是?... 已知△ABC的面积为1/4(a²+b²-c²),则C的度数是? 展开
Cdrinky
2010-07-27 · TA获得超过191个赞
知道答主
回答量:44
采纳率:0%
帮助的人:59万
展开全部
三角形面积为:
S=a*b*sin(∠C)/2
同时面积为1/4(a²+b²-c²),所以
1/4(a²+b²-c²)=a*b*sin(∠C)/2
等式两边同时乘以4,得
(a²+b²-c²)=2*a*b*sin(∠C) ②

而三角形角C的余弦公式为:
2*a*b*cos(∠C)=(a²+b²-c²) ①
观察①式和②式,可以看出
2*a*b*cos(∠C)=(a²+b²-c²)=2*a*b*sin(∠C)
所以sin(∠C)=cos(∠C),又因为sin(∠C)*sin(∠C)+cos(∠C)*cos(∠C)=1
得出 sin(∠C)=二分之根号二,
所以C的度数是45度

打得好累,第一次在百度答题,多多鼓励一下吧
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式