阅读理解:如图,已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的

阅读理解:如图,已知直线m∥n,A、B为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.根据上述内容解决以下问题:已知正方形ABCD的边长为... 阅读理解:如图,已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.根据上述内容解决以下问题:已知正方形ABCD的边长为4,G是边CD上一点,以CG为边作正方形GCEF.(1)如图(2), 当点G是CD的中点时,△BDF的面积为 .(2)如图(3), 当CG = a时, 则△BDF的面积为 ,并说明理由. 探索应用:小张家有一块长方形的土地如图(4),由于修建高速公路被占去一块三角形BCP区域.现决定在DP右侧补给小张一块土地,补偿后,土地变为四边形ABMD,要求补偿后的四边形ABMD的面积与原来形长方形ABCD的面积相等且M在射线BP上,请你在图中画出M点的位置,并简要叙述做法. 展开
 我来答
阿瑟6287
推荐于2016-06-13 · TA获得超过177个赞
知道答主
回答量:194
采纳率:0%
帮助的人:64.7万
展开全部
(1)8,8; (2)画图见解析.


试题分析:(1)(2)(3)连接FC,∠BDC=∠DCF=45°,根据内错角相等,两直线平行可以证明BD∥CF,然后根据题目信息可以得到:△BDF的面积=△ABD的面积;
探索应用:同理,连接BD,过点C作BD的平行线,交BP的延长线于点M,则:△BDM的面积=△BDC的面积,所以补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上.
(1)8,
(2)8,
理由如下:连接CF,
∵BD、CF分别为两正方形的对角线,
∴∠BDC=∠DCF=45°,
∴BD∥CF,
∴S△BDF=S△CBD=8;

探索应用:连接BD,过C点作BD的平行线交BP的延长线于M,连接DM,

则S△BDM=S△CBD,
∴S△BDM-S△BDP=S△CBD-S△BDP,
即:S△DMP=S△PCB.
∴补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式