高一 数学 高中数学题 请详细解答,谢谢! (31 6:54:14)
4个回答
展开全部
y=sin(π/3+4x)+cos(4x-π/6)
=sin(π/3+4x)+sin(π/2-4x+π/6)
=sin(π/3+4x)+sin(2π/3-4x)
=2sin[(π/3+4x+2π/3-4x)/2]cos[(π/3+4x-2π/3+4x)/2]
=2sin(π/2)cos(4x-π/6)
=2cos(4x-π/6)
当2kπ<=4x-π/6<=2kπ+π时,
即kπ/2+π/24<=x<=kπ/2+7π/24时(k为整数)单调递减
当(2k-1)π<=4x-π/6<=2kπ时,
即kπ/2-5π/24<=x<=kπ/2+π/24时(k为整数),单调递增
=sin(π/3+4x)+sin(π/2-4x+π/6)
=sin(π/3+4x)+sin(2π/3-4x)
=2sin[(π/3+4x+2π/3-4x)/2]cos[(π/3+4x-2π/3+4x)/2]
=2sin(π/2)cos(4x-π/6)
=2cos(4x-π/6)
当2kπ<=4x-π/6<=2kπ+π时,
即kπ/2+π/24<=x<=kπ/2+7π/24时(k为整数)单调递减
当(2k-1)π<=4x-π/6<=2kπ时,
即kπ/2-5π/24<=x<=kπ/2+π/24时(k为整数),单调递增
展开全部
把这个函数的两项按和、差公式展开,再合并同类项后结合成一个函数,单调区间立得。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先化简,再求值.具体如下:
y=sin(π/3+4x)+cos(4x-π/6)
=sinπ/3cos4x+cosπ/3sin4x+cos4xcosπ/6+sin4xsinπ/6
=√3*cos4x+sin4x
=2sin(4x+π/3)
由-π/2+2kπ<=4x+π/6<=π/2+2kπ=====>-π/6+kπ/2<=x<=π/12+kπ/2为单调增区间
由π/2+2kπ<=4x+π/6<=3π/2+2kπ=====>π/12+kπ/2<=x<=π/3+kπ/2为单调增区间
y=sin(π/3+4x)+cos(4x-π/6)
=sinπ/3cos4x+cosπ/3sin4x+cos4xcosπ/6+sin4xsinπ/6
=√3*cos4x+sin4x
=2sin(4x+π/3)
由-π/2+2kπ<=4x+π/6<=π/2+2kπ=====>-π/6+kπ/2<=x<=π/12+kπ/2为单调增区间
由π/2+2kπ<=4x+π/6<=3π/2+2kπ=====>π/12+kπ/2<=x<=π/3+kπ/2为单调增区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=sin(π/3+4x)+cos(4x-π/6)
=sinπ/3cos4x+cosπ/3sin4x+cos4xcosπ/6+sin4xsinπ/6
=√3*cos4x+sin4x
=2sin(4x+π/3)
增区间:-π/2+2kπ<=4x+π/3<=π/2+2kπ 【k为整数】
即kπ/2-5π/24<=x<=kπ/2+π/24
减区间:π/2+2kπ<=4x+π/3<=3π/2+2kπ
即kπ/2+π/24<=x<=kπ/2+7π/24
=sinπ/3cos4x+cosπ/3sin4x+cos4xcosπ/6+sin4xsinπ/6
=√3*cos4x+sin4x
=2sin(4x+π/3)
增区间:-π/2+2kπ<=4x+π/3<=π/2+2kπ 【k为整数】
即kπ/2-5π/24<=x<=kπ/2+π/24
减区间:π/2+2kπ<=4x+π/3<=3π/2+2kπ
即kπ/2+π/24<=x<=kπ/2+7π/24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询