对数函数运用!!
设f(x)=4ⁿ/4ⁿ+2,若0<a<1,试求:f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)...
设f(x)=4ⁿ/4ⁿ+2,若0<a<1,试求:
f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 展开
f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 展开
2个回答
展开全部
解:是f(n)=4ⁿ/4ⁿ+2吧
f(n)+f(1-n)
=4^n/(4^n+2)+4^(1-n)/[4^(1-n)+2]
=4^n/(4^n+2)+(4/4^n)/[(4/4^n)+2]
=4^n/(4^n+2)+4/(4+2*4^n)
=4^n/(4^n+2)+2/(2+4^n)
=(4^n+2)/(4^n+2)
=1
所以f(1/1001)+f(2/1001)+……+f(1000/1001)
=[f(1/1001)+f(1000/1001)]+……+[f(500/1001)+f(501/1001)]
=1+1+……+1
=1*500
=500
f(n)+f(1-n)
=4^n/(4^n+2)+4^(1-n)/[4^(1-n)+2]
=4^n/(4^n+2)+(4/4^n)/[(4/4^n)+2]
=4^n/(4^n+2)+4/(4+2*4^n)
=4^n/(4^n+2)+2/(2+4^n)
=(4^n+2)/(4^n+2)
=1
所以f(1/1001)+f(2/1001)+……+f(1000/1001)
=[f(1/1001)+f(1000/1001)]+……+[f(500/1001)+f(501/1001)]
=1+1+……+1
=1*500
=500
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询