1、已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2 (1)求椭圆的标准方程 (2)设O为坐标

1、已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2(1)求椭圆的标准方程(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线... 1、已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2
(1)求椭圆的标准方程
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值

请大家回答第二题 回答对有奖励
展开
 我来答
962067772
2010-08-24
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
2):由(1)得方程为x2/2+y2=1
F(1,0) N(x0,y0)
斜率K(fn)=y0/(x0-1)
斜率K(on)=yo/xo
因为FN⊥OM
所以斜率K(om)=(x0-1)/(-y0)
所以OM直线方程为y=((x0-1)/(-y0))*x
所以M(2,2(xo-1)/(-y0)
所以斜率K(mn)=(y0+2(x0-1)/y0)/(x0-2)
因为MN⊥ON
所以K(mn)*K(on)=-1
代入得xo2+yo2=2
所以ON=√2 为定值

写得有些乱
最好画个图再看一下
应该会懂得
百度网友3e76f54
2010-08-12 · TA获得超过645个赞
知道小有建树答主
回答量:312
采纳率:0%
帮助的人:0
展开全部
1、因为准线与Y轴垂直,所以椭圆焦点在X上

2b=2,b=1,L:X=a^2/c=2,a^2-b^2=c^2

a^2-c^2=1,a^2=2c,c=1

c^2=1,a^2=2

a^2/2+b^2=1
2、
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式