如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求
如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点...
如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
展开
1个回答
展开全部
(1)证明:∵△AOB是直角三角形,
∴∠A+∠B=90°,∠AOC+∠BOC=90°,
∵∠A=∠AOC,
∴∠B=∠BOC;
解:(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,
∴∠A=∠DOB,
又∵∠DOB=∠EOB,∠A=∠E,
∴∠DOB=∠EOB=∠OAE=∠OEA,
∵∠DOB+∠EOB+∠OEA=90°,
∴∠A=30°;
(3)∠P的度数不变,∠P=25°.理由如下:(只答不变不得分)
∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC,
又∵OF平分∠AOM,CP平分∠BCO,
∴∠FOM=45°-
∠AOC ①,∠PCO=
∠A+
∠AOC ②,
①+②得:∠PCO+∠FOM=45°+
∠A,
∴∠P=180°-(∠PCO+∠FOM+90°)
=180°-(45°+
∠A+90°)
=180°-(45°+20°+90°)
=25°.
∴∠A+∠B=90°,∠AOC+∠BOC=90°,
∵∠A=∠AOC,
∴∠B=∠BOC;
解:(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,
∴∠A=∠DOB,
又∵∠DOB=∠EOB,∠A=∠E,
∴∠DOB=∠EOB=∠OAE=∠OEA,
∵∠DOB+∠EOB+∠OEA=90°,
∴∠A=30°;
(3)∠P的度数不变,∠P=25°.理由如下:(只答不变不得分)
∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC,
又∵OF平分∠AOM,CP平分∠BCO,
∴∠FOM=45°-
1 |
2 |
1 |
2 |
1 |
2 |
①+②得:∠PCO+∠FOM=45°+
1 |
2 |
∴∠P=180°-(∠PCO+∠FOM+90°)
=180°-(45°+
1 |
2 |
=180°-(45°+20°+90°)
=25°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询